Variational Methods in Shape Optimization Problems (Hardcover, 2005 ed.)

,
The study of shape optimization problems encompasses a wide spectrum of academic research with numerous applications to the real world. In this work these problems are treated from both the classical and modern perspectives and target a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems.

Key topics and features:

* Presents foundational introduction to shape optimization theory

* Studies certain classical problems: the isoperimetric problem and the Newton problem involving the best aerodynamical shape, and optimization problems over classes of convex domains

* Treats optimal control problems under a general scheme, giving a topological framework, a survey of "gamma"-convergence, and problems governed by ODE

* Examines shape optimization problems with Dirichlet and Neumann conditions on the free boundary, along with the existence of classical solutions

* Studies optimization problems for obstacles and eigenvalues of elliptic operators

* Poses several open problems for further research

* Substantial bibliography and index

Driven by good examples and illustrations and requiring only a standard knowledge in the calculus of variations, differential equations, and functional analysis, the book can serve as a text for a graduate course in computational methods of optimal design and optimization, as well as an excellent reference for applied mathematicians addressing functional shape optimization problems.


R1,685
List Price R1,993
Save R308 15%

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles16850
Mobicred@R158pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

The study of shape optimization problems encompasses a wide spectrum of academic research with numerous applications to the real world. In this work these problems are treated from both the classical and modern perspectives and target a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems.

Key topics and features:

* Presents foundational introduction to shape optimization theory

* Studies certain classical problems: the isoperimetric problem and the Newton problem involving the best aerodynamical shape, and optimization problems over classes of convex domains

* Treats optimal control problems under a general scheme, giving a topological framework, a survey of "gamma"-convergence, and problems governed by ODE

* Examines shape optimization problems with Dirichlet and Neumann conditions on the free boundary, along with the existence of classical solutions

* Studies optimization problems for obstacles and eigenvalues of elliptic operators

* Poses several open problems for further research

* Substantial bibliography and index

Driven by good examples and illustrations and requiring only a standard knowledge in the calculus of variations, differential equations, and functional analysis, the book can serve as a text for a graduate course in computational methods of optimal design and optimization, as well as an excellent reference for applied mathematicians addressing functional shape optimization problems.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Birkhauser Boston

Country of origin

United States

Series

Progress in Nonlinear Differential Equations and Their Applications, 65

Release date

July 2005

Availability

Expected to ship within 12 - 17 working days

First published

2005

Authors

,

Dimensions

235 x 155 x 21mm (L x W x T)

Format

Hardcover

Pages

216

Edition

2005 ed.

ISBN-13

978-0-8176-4359-1

Barcode

9780817643591

Categories

LSN

0-8176-4359-1



Trending On Loot