The Novikov Conjecture - Geometry and Algebra (Paperback, 2005 ed.)

,
Manifolds are the central geometric objects in modern mathematics. An attempt to understand the nature of manifolds leads to many interesting questions. One of the most obvious questions is the following. Let M and N be manifolds: how can we decide whether M and N are ho- topy equivalent or homeomorphic or di?eomorphic (if the manifolds are smooth)? The prototype of a beautiful answer is given by the Poincar e Conjecture. If n N is S, the n-dimensional sphere, and M is an arbitrary closed manifold, then n it is easy to decide whether M is homotopy equivalent to S . Thisisthecaseif and only if M is simply connected (assumingn> 1, the case n = 1 is trivial since 1 every closed connected 1-dimensional manifold is di?eomorphic toS ) and has the n homology of S . The PoincareConjecture states that this is also su?cient for the n existenceof ahomeomorphism fromM toS . For n = 2this followsfromthewe- known classi?cation of surfaces. Forn> 4 this was proved by Smale and Newman in the 1960s, Freedman solved the case in n = 4 in 1982 and recently Perelman announced a proof for n = 3, but this proof has still to be checked thoroughly by the experts. In the smooth category it is not true that manifolds homotopy n equivalent to S are di?eomorphic. The ?rst examples were published by Milnor in 1956 and together with Kervaire he analyzed the situation systematically in the 1960s."

R1,848

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles18480
Mobicred@R173pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Manifolds are the central geometric objects in modern mathematics. An attempt to understand the nature of manifolds leads to many interesting questions. One of the most obvious questions is the following. Let M and N be manifolds: how can we decide whether M and N are ho- topy equivalent or homeomorphic or di?eomorphic (if the manifolds are smooth)? The prototype of a beautiful answer is given by the Poincar e Conjecture. If n N is S, the n-dimensional sphere, and M is an arbitrary closed manifold, then n it is easy to decide whether M is homotopy equivalent to S . Thisisthecaseif and only if M is simply connected (assumingn> 1, the case n = 1 is trivial since 1 every closed connected 1-dimensional manifold is di?eomorphic toS ) and has the n homology of S . The PoincareConjecture states that this is also su?cient for the n existenceof ahomeomorphism fromM toS . For n = 2this followsfromthewe- known classi?cation of surfaces. Forn> 4 this was proved by Smale and Newman in the 1960s, Freedman solved the case in n = 4 in 1982 and recently Perelman announced a proof for n = 3, but this proof has still to be checked thoroughly by the experts. In the smooth category it is not true that manifolds homotopy n equivalent to S are di?eomorphic. The ?rst examples were published by Milnor in 1956 and together with Kervaire he analyzed the situation systematically in the 1960s."

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Birkhauser Verlag AG

Country of origin

Switzerland

Series

Oberwolfach Seminars, 33

Release date

November 2004

Availability

Expected to ship within 10 - 15 working days

First published

2005

Authors

,

Dimensions

254 x 178 x 15mm (L x W x T)

Format

Paperback

Pages

266

Edition

2005 ed.

ISBN-13

978-3-7643-7141-8

Barcode

9783764371418

Categories

LSN

3-7643-7141-2



Trending On Loot