Stochastic and Differential Games - Theory and Numerical Methods (Hardcover, 1999 ed.)


The theory of two-person, zero-sum differential games started at the be- ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton- Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe- sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv- ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po- sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.

R3,251

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles32510
Mobicred@R305pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days



Product Description

The theory of two-person, zero-sum differential games started at the be- ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton- Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe- sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv- ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po- sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Birkhauser Boston

Country of origin

United States

Series

Annals of the International Society of Dynamic Games, 4

Release date

June 1999

Availability

Expected to ship within 10 - 15 working days

First published

1999

Editors

, ,

Dimensions

235 x 155 x 22mm (L x W x T)

Format

Hardcover

Pages

381

Edition

1999 ed.

ISBN-13

978-0-8176-4029-3

Barcode

9780817640293

Categories

LSN

0-8176-4029-0



Trending On Loot