Self-Organized Quantum Dots for Memories - Electronic Properties and Carrier Dynamics (Hardcover, 2014 ed.)


Today s semiconductor memory market is divided between two types of memory: DRAM and Flash. Each has its own advantages and disadvantages. While DRAM is fast but volatile, Flash is non-volatile but slow. A memory system based on self-organized quantum dots (QDs) as storage node could combine the advantages of modern DRAM and Flash, thus merging the latter s non-volatility with very fast write times.

This thesis investigates the electronic properties of and carrier dynamics in self-organized quantum dots by means of time-resolved capacitance spectroscopy and time-resolved current measurements. The first aim is to study the localization energy of various QD systems in order to assess the potential of increasing the storage time in QDs to non-volatility. Surprisingly, it is found that the major impact of carrier capture cross-sections of QDs is to influence, and at times counterbalance, carrier storage in addition to the localization energy. The second aim is to study the coupling between a layer of self-organized QDs and a two-dimensional hole gas (2DHG), which is relevant for the read-out process in memory systems. The investigation yields the discovery of the many-particle ground states in the QD ensemble.In addition to its technological relevance, the thesis also offers new insights into the fascinating field of nanostructure physics."


R3,441

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles34410
Mobicred@R322pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days



Product Description

Today s semiconductor memory market is divided between two types of memory: DRAM and Flash. Each has its own advantages and disadvantages. While DRAM is fast but volatile, Flash is non-volatile but slow. A memory system based on self-organized quantum dots (QDs) as storage node could combine the advantages of modern DRAM and Flash, thus merging the latter s non-volatility with very fast write times.

This thesis investigates the electronic properties of and carrier dynamics in self-organized quantum dots by means of time-resolved capacitance spectroscopy and time-resolved current measurements. The first aim is to study the localization energy of various QD systems in order to assess the potential of increasing the storage time in QDs to non-volatility. Surprisingly, it is found that the major impact of carrier capture cross-sections of QDs is to influence, and at times counterbalance, carrier storage in addition to the localization energy. The second aim is to study the coupling between a layer of self-organized QDs and a two-dimensional hole gas (2DHG), which is relevant for the read-out process in memory systems. The investigation yields the discovery of the many-particle ground states in the QD ensemble.In addition to its technological relevance, the thesis also offers new insights into the fascinating field of nanostructure physics."

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer International Publishing AG

Country of origin

Switzerland

Series

Springer Theses

Release date

October 2013

Availability

Expected to ship within 12 - 17 working days

First published

2014

Authors

Dimensions

235 x 155 x 15mm (L x W x T)

Format

Hardcover

Pages

153

Edition

2014 ed.

ISBN-13

978-3-319-01969-7

Barcode

9783319019697

Categories

LSN

3-319-01969-4



Trending On Loot