Quadratic Irrationals - An Introduction to Classical Number Theory (Hardcover, New)


Quadratic Irrationals: An Introduction to Classical Number Theory gives a unified treatment of the classical theory of quadratic irrationals. Presenting the material in a modern and elementary algebraic setting, the author focuses on equivalence, continued fractions, quadratic characters, quadratic orders, binary quadratic forms, and class groups. The book highlights the connection between Gauss's theory of binary forms and the arithmetic of quadratic orders. It collects essential results of the theory that have previously been difficult to access and scattered in the literature, including binary quadratic Diophantine equations and explicit continued fractions, biquadratic class group characters, the divisibility of class numbers by 16, F. Mertens' proof of Gauss's duplication theorem, and a theory of binary quadratic forms that departs from the restriction to fundamental discriminants. The book also proves Dirichlet's theorem on primes in arithmetic progressions, covers Dirichlet's class number formula, and shows that every primitive binary quadratic form represents infinitely many primes. The necessary fundamentals on algebra and elementary number theory are given in an appendix. Research on number theory has produced a wealth of interesting and beautiful results yet topics are strewn throughout the literature, the notation is far from being standardized, and a unifying approach to the different aspects is lacking. Covering both classical and recent results, this book unifies the theory of continued fractions, quadratic orders, binary quadratic forms, and class groups based on the concept of a quadratic irrational.

R5,669

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles56690
Mobicred@R531pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days



Product Description

Quadratic Irrationals: An Introduction to Classical Number Theory gives a unified treatment of the classical theory of quadratic irrationals. Presenting the material in a modern and elementary algebraic setting, the author focuses on equivalence, continued fractions, quadratic characters, quadratic orders, binary quadratic forms, and class groups. The book highlights the connection between Gauss's theory of binary forms and the arithmetic of quadratic orders. It collects essential results of the theory that have previously been difficult to access and scattered in the literature, including binary quadratic Diophantine equations and explicit continued fractions, biquadratic class group characters, the divisibility of class numbers by 16, F. Mertens' proof of Gauss's duplication theorem, and a theory of binary quadratic forms that departs from the restriction to fundamental discriminants. The book also proves Dirichlet's theorem on primes in arithmetic progressions, covers Dirichlet's class number formula, and shows that every primitive binary quadratic form represents infinitely many primes. The necessary fundamentals on algebra and elementary number theory are given in an appendix. Research on number theory has produced a wealth of interesting and beautiful results yet topics are strewn throughout the literature, the notation is far from being standardized, and a unifying approach to the different aspects is lacking. Covering both classical and recent results, this book unifies the theory of continued fractions, quadratic orders, binary quadratic forms, and class groups based on the concept of a quadratic irrational.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Crc Press

Country of origin

United States

Series

Chapman & Hall/CRC Pure and Applied Mathematics

Release date

June 2013

Availability

Expected to ship within 12 - 17 working days

First published

2013

Authors

Dimensions

254 x 178 x 31mm (L x W x T)

Format

Hardcover

Pages

431

Edition

New

ISBN-13

978-1-4665-9183-7

Barcode

9781466591837

Categories

LSN

1-4665-9183-8



Trending On Loot