Piton - A Mechanically Verified Assembly-Level Language (Paperback, Softcover reprint of the original 1st ed. 1996)


Mountaineers use pitons to protect themselves from falls. The lead climber wears a harness to which a rope is tied. As the climber ascends, the rope is paid out by a partner on the ground. As described thus far, the climber receives no protection from the rope or the partner. However, the climber generally carries several spike-like pitons and stops when possible to drive one into a small crack or crevice in the rock face. After climbing just above the piton, the climber clips the rope to the piton, using slings and carabiners. A subsequent fall would result in the climber hanging from the piton if the piton stays in the rock, the slings and carabiners do not fail, the rope does not break, the partner is holding the rope taut and secure, and the climber had not climbed too high above the piton before falling. The climber's safety clearly depends on all of the components of the system. But the piton is distinguished because it connects the natural to the artificial. In 1987 I designed an assembly-level language for Warren Hunt's FM8501 verified microprocessor. I wanted the language to be conveniently used as the object code produced by verified compilers. Thus, I envisioned the language as the first software link in a trusted chain from verified hardware to verified applications programs. Thinking of the hardware as the "rock" I named the language "Piton."

R1,592

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles15920
Mobicred@R149pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days



Product Description

Mountaineers use pitons to protect themselves from falls. The lead climber wears a harness to which a rope is tied. As the climber ascends, the rope is paid out by a partner on the ground. As described thus far, the climber receives no protection from the rope or the partner. However, the climber generally carries several spike-like pitons and stops when possible to drive one into a small crack or crevice in the rock face. After climbing just above the piton, the climber clips the rope to the piton, using slings and carabiners. A subsequent fall would result in the climber hanging from the piton if the piton stays in the rock, the slings and carabiners do not fail, the rope does not break, the partner is holding the rope taut and secure, and the climber had not climbed too high above the piton before falling. The climber's safety clearly depends on all of the components of the system. But the piton is distinguished because it connects the natural to the artificial. In 1987 I designed an assembly-level language for Warren Hunt's FM8501 verified microprocessor. I wanted the language to be conveniently used as the object code produced by verified compilers. Thus, I envisioned the language as the first software link in a trusted chain from verified hardware to verified applications programs. Thinking of the hardware as the "rock" I named the language "Piton."

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer

Country of origin

Netherlands

Series

Automated Reasoning Series, 3

Release date

October 2013

Availability

Expected to ship within 10 - 15 working days

First published

1996

Authors

Dimensions

235 x 155 x 17mm (L x W x T)

Format

Paperback

Pages

320

Edition

Softcover reprint of the original 1st ed. 1996

ISBN-13

978-9401737913

Barcode

9789401737913

Categories

LSN

9401737916



Trending On Loot