Microcavities and Photonic Bandgaps: Physics and Applications (Hardcover, 1996 ed.)


The control of optical modes in microcavities or in photonic bandgap (PBG) materials is coming of age Although these ideas could have been developed some time ago, it is only recently that they have emerged, due to advances in both atomic physics and in fabrication techniques, be it on the high-quality dielectric mirrors required for high-finesse Fabry Perot resonators or in semiconductor multilayer deposition methods. Initially the principles of quantum electro-dynamics (QED) were demonstrated in elegant atomic physics experiments. Now solid-state implementations are being investigated, with several subtle differences from the atomic case such as those due to their continuum of electronic states or the near Boson nature of their elementary excitations, the exciton. Research into quantum optics brings us ever newer concepts with potential to improve system performance such as photon squeezing, quantum cryptography, reversible taps, photonic de Broglie waves and quantum computers. The possibility of implementing these ideas with solid-state systems gives us hope that some could indeed find their way to the market, demonstrating the continuing importance of basic research for applications, be it in a somewhat more focused way than in earlier times for funding."

R8,833

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles88330
Mobicred@R828pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

The control of optical modes in microcavities or in photonic bandgap (PBG) materials is coming of age Although these ideas could have been developed some time ago, it is only recently that they have emerged, due to advances in both atomic physics and in fabrication techniques, be it on the high-quality dielectric mirrors required for high-finesse Fabry Perot resonators or in semiconductor multilayer deposition methods. Initially the principles of quantum electro-dynamics (QED) were demonstrated in elegant atomic physics experiments. Now solid-state implementations are being investigated, with several subtle differences from the atomic case such as those due to their continuum of electronic states or the near Boson nature of their elementary excitations, the exciton. Research into quantum optics brings us ever newer concepts with potential to improve system performance such as photon squeezing, quantum cryptography, reversible taps, photonic de Broglie waves and quantum computers. The possibility of implementing these ideas with solid-state systems gives us hope that some could indeed find their way to the market, demonstrating the continuing importance of basic research for applications, be it in a somewhat more focused way than in earlier times for funding."

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer

Country of origin

Netherlands

Series

NATO Science Series E:, 324

Release date

August 1996

Availability

Expected to ship within 10 - 15 working days

First published

1996

Editors

,

Dimensions

240 x 160 x 33mm (L x W x T)

Format

Hardcover

Pages

601

Edition

1996 ed.

ISBN-13

978-0-7923-4170-3

Barcode

9780792341703

Categories

LSN

0-7923-4170-8



Trending On Loot