Large Deviations Analysis to the Performance of Distributed Detection (Paperback)


This book studies the performance of distributed detection systems by means of large deviation techniques under two distinct models. In the first model, the error performance is investigated as the number of sensors tends to infinity by assuming that the i.i.d. sensor data are quantized locally into m-ary messages and transmitted to the fusion center for binary hypothesis testing. It is found that when the second moment of the post-quantization log-likelihood ratio is unbounded, the Neyman-Pearson error exponent becomes a function of the test level; whereas the Bayes error exponent remains unaffected. Also shown is that in Bayes testing, the equivalence of absolutely optimal and best identical-quantizer systems is not limited to error exponents but extends to the actual Bayes errors up to a multiplicative constant. In the second model, the null and alternative distributions become spatially correlated Gaussian, differing in the mean. The issue considered includes whether contiguous marginal likelihood ratio quantizers are optimal. It is shown that this is not true in general, and a sufficient condition is obtained under the case of a single observation per sensor.

R1,570

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles15700
Mobicred@R147pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

This book studies the performance of distributed detection systems by means of large deviation techniques under two distinct models. In the first model, the error performance is investigated as the number of sensors tends to infinity by assuming that the i.i.d. sensor data are quantized locally into m-ary messages and transmitted to the fusion center for binary hypothesis testing. It is found that when the second moment of the post-quantization log-likelihood ratio is unbounded, the Neyman-Pearson error exponent becomes a function of the test level; whereas the Bayes error exponent remains unaffected. Also shown is that in Bayes testing, the equivalence of absolutely optimal and best identical-quantizer systems is not limited to error exponents but extends to the actual Bayes errors up to a multiplicative constant. In the second model, the null and alternative distributions become spatially correlated Gaussian, differing in the mean. The issue considered includes whether contiguous marginal likelihood ratio quantizers are optimal. It is shown that this is not true in general, and a sufficient condition is obtained under the case of a single observation per sensor.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Lap Lambert Academic Publishing

Country of origin

Germany

Release date

October 2010

Availability

Expected to ship within 10 - 15 working days

First published

October 2010

Authors

Dimensions

229 x 152 x 8mm (L x W x T)

Format

Paperback - Trade

Pages

132

ISBN-13

978-3-8433-6999-2

Barcode

9783843369992

Categories

LSN

3-8433-6999-2



Trending On Loot