Geometric Analysis and Applications to Quantum Field Theory (Hardcover, 2002 ed.)


In recent years, there has been tremendous progress on the interface of geometry and mathematical physics. This book reflects the expanded articles of several lectures in these areas delivered at the University of Adelaide, with an audience of primarily graduate students. The aim of this volume is to provide surveys of recent progress without assuming too much prerequisite knowledge and with a comprehensive bibliography, so that researchers and graduate students in geometry and mathematical physics will benefit. The contributors cover a number of areas in mathematical physics. Chapter 1 offers a self-contained derivation of the partition function of Chern-Simons gauge theory in the semiclassical approximation. Chapter 2 considers the algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory, including their relation to the braid group, quantum groups and infinite dimensional Lie algebras. Chapter 3 surveys the application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems. Chapter 4 examines the variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds. Chapter 5 is a review of monopoles in non-Abelian gauge theories and the various approaches to understanding them. Chapter 6 covers much of the exciting recent developments in quantum cohomology, including relative Gromov-Witten invariant, birational geometry, naturality and mirror symmetry. Chapter 7 explains the physics origin of the Seiberg-Witten equations in four-manifold theory and a number of important concepts in quantum field theory, such asvacuum, mass gap, (super)symmetry, anomalies and duality. Contributors: D.H. Adam, P. Bouwknegt, A.L. Carey, A. Harris, E. Langmann, M.K. Murray, Y. Ruan, S. Wu D. H. Adams: Semiclassical Approximation in Chern-Simons Gauge Theory P. Bouwknegt: The Knizhnik-Zamolodchikov Equations A. L. Carey and E. Langmann: Loop Groups and Quantum Fields A. Harris: Some Applications of Variational Calculus in Hermitian Geometry M. K. Murray: Monopoles Y. Ruan: On Gromov-Witten Invariants and Quantum Cohomology S. Wu The Geometry and Physics of the Seiberg-Witten Equations

R1,685

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles16850
Mobicred@R158pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

In recent years, there has been tremendous progress on the interface of geometry and mathematical physics. This book reflects the expanded articles of several lectures in these areas delivered at the University of Adelaide, with an audience of primarily graduate students. The aim of this volume is to provide surveys of recent progress without assuming too much prerequisite knowledge and with a comprehensive bibliography, so that researchers and graduate students in geometry and mathematical physics will benefit. The contributors cover a number of areas in mathematical physics. Chapter 1 offers a self-contained derivation of the partition function of Chern-Simons gauge theory in the semiclassical approximation. Chapter 2 considers the algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory, including their relation to the braid group, quantum groups and infinite dimensional Lie algebras. Chapter 3 surveys the application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems. Chapter 4 examines the variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds. Chapter 5 is a review of monopoles in non-Abelian gauge theories and the various approaches to understanding them. Chapter 6 covers much of the exciting recent developments in quantum cohomology, including relative Gromov-Witten invariant, birational geometry, naturality and mirror symmetry. Chapter 7 explains the physics origin of the Seiberg-Witten equations in four-manifold theory and a number of important concepts in quantum field theory, such asvacuum, mass gap, (super)symmetry, anomalies and duality. Contributors: D.H. Adam, P. Bouwknegt, A.L. Carey, A. Harris, E. Langmann, M.K. Murray, Y. Ruan, S. Wu D. H. Adams: Semiclassical Approximation in Chern-Simons Gauge Theory P. Bouwknegt: The Knizhnik-Zamolodchikov Equations A. L. Carey and E. Langmann: Loop Groups and Quantum Fields A. Harris: Some Applications of Variational Calculus in Hermitian Geometry M. K. Murray: Monopoles Y. Ruan: On Gromov-Witten Invariants and Quantum Cohomology S. Wu The Geometry and Physics of the Seiberg-Witten Equations

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Birkhauser Boston

Country of origin

United States

Series

Progress in Mathematics, 205

Release date

February 2002

Availability

Expected to ship within 12 - 17 working days

First published

February 2002

Editors

,

Dimensions

235 x 155 x 14mm (L x W x T)

Format

Hardcover

Pages

207

Edition

2002 ed.

ISBN-13

978-0-8176-4287-7

Barcode

9780817642877

Categories

LSN

0-8176-4287-0



Trending On Loot