Cryptographic Applications of Analytic Number Theory - Complexity Lower Bounds and Pseudorandomness (Hardcover, 2003 ed.)


The book introduces new techniques that imply rigorous lower bounds on the com plexity of some number-theoretic and cryptographic problems. It also establishes certain attractive pseudorandom properties of various cryptographic primitives. These methods and techniques are based on bounds of character sums and num bers of solutions of some polynomial equations over finite fields and residue rings. Other number theoretic techniques such as sieve methods and lattice reduction algorithms are used as well. The book also contains a number of open problems and proposals for further research. The emphasis is on obtaining unconditional rigorously proved statements. The bright side of this approach is that the results do not depend on any assumptions or conjectures. On the downside, the results are much weaker than those which are widely believed to be true. We obtain several lower bounds, exponential in terms of logp, on the degrees and orders of o polynomials; o algebraic functions; o Boolean functions; o linear recurrence sequences; coinciding with values of the discrete logarithm modulo a prime p at sufficiently many points (the number of points can be as small as pI/2+O: ). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the rightmost bit of the discrete logarithm and defines whether the argument is a quadratic residue."

R3,270

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles32700
Mobicred@R306pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days



Product Description

The book introduces new techniques that imply rigorous lower bounds on the com plexity of some number-theoretic and cryptographic problems. It also establishes certain attractive pseudorandom properties of various cryptographic primitives. These methods and techniques are based on bounds of character sums and num bers of solutions of some polynomial equations over finite fields and residue rings. Other number theoretic techniques such as sieve methods and lattice reduction algorithms are used as well. The book also contains a number of open problems and proposals for further research. The emphasis is on obtaining unconditional rigorously proved statements. The bright side of this approach is that the results do not depend on any assumptions or conjectures. On the downside, the results are much weaker than those which are widely believed to be true. We obtain several lower bounds, exponential in terms of logp, on the degrees and orders of o polynomials; o algebraic functions; o Boolean functions; o linear recurrence sequences; coinciding with values of the discrete logarithm modulo a prime p at sufficiently many points (the number of points can be as small as pI/2+O: ). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the rightmost bit of the discrete logarithm and defines whether the argument is a quadratic residue."

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Birkhauser Verlag AG

Country of origin

Switzerland

Series

Progress in Computer Science and Applied Logic, 22

Release date

December 2002

Availability

Expected to ship within 10 - 15 working days

First published

2003

Authors

Dimensions

235 x 155 x 23mm (L x W x T)

Format

Hardcover

Pages

414

Edition

2003 ed.

ISBN-13

978-3-7643-6654-4

Barcode

9783764366544

Categories

LSN

3-7643-6654-0



Trending On Loot