4H-Silicon Carbide MOSFET (Paperback)


Silicon carbide is the only wide band gap semiconductor that has a native oxide, and a leading candidate for development of next-generation, energy efficient, high power metal-oxide-semiconductor field effect transistors (MOSFETs). Progress in this technology has been limited by the semiconductor-dielectric interface structure and its effect on the inversion layer mobility. The major objective of this work is to study and improve 4H-SiC MOSFET interface structure, defect states and inversion layer mobility on the (11-20) crystal face of SiC (a-face), employing nitrogen and phosphorous passivation. We also use these results to explore the effect of reactive ion etching on the a-face, an important aspect of processing optimum power devices. We correlate electrical measurements, i.e. current-voltage (I-V) and capacitance-voltage (C-V) with physical characterization including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), transmission electron microscopy (TEM), secondary ion mass spectrometry (SIMS) and medium energy ion scattering (MEIS).

R1,589

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles15890
Mobicred@R149pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Silicon carbide is the only wide band gap semiconductor that has a native oxide, and a leading candidate for development of next-generation, energy efficient, high power metal-oxide-semiconductor field effect transistors (MOSFETs). Progress in this technology has been limited by the semiconductor-dielectric interface structure and its effect on the inversion layer mobility. The major objective of this work is to study and improve 4H-SiC MOSFET interface structure, defect states and inversion layer mobility on the (11-20) crystal face of SiC (a-face), employing nitrogen and phosphorous passivation. We also use these results to explore the effect of reactive ion etching on the a-face, an important aspect of processing optimum power devices. We correlate electrical measurements, i.e. current-voltage (I-V) and capacitance-voltage (C-V) with physical characterization including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), transmission electron microscopy (TEM), secondary ion mass spectrometry (SIMS) and medium energy ion scattering (MEIS).

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Scholars Press

Country of origin

United States

Release date

March 2014

Availability

Expected to ship within 10 - 15 working days

First published

March 2014

Authors

Dimensions

229 x 152 x 7mm (L x W x T)

Format

Paperback - Trade

Pages

124

ISBN-13

978-3-639-71248-3

Barcode

9783639712483

Categories

LSN

3-639-71248-X



Trending On Loot