Integration of Renewable Energy Systems (Hardcover)

, , , , , , , ,
Energy efficiency measures are generally less expensive than a renewable energy (RE) system to provide the same amount of energy saved. The Energy Information Administration reports that, on average, a dollar spent on efficiency saves $2 off the cost of a renewable energy system to provide the same amount of energy [IEA, 2011]. But as the saying goes "you can't save yourself rich" and having installed sophisticated controls and efficient systems, we need some source of energy to power them. On-site renewable energy systems offer several advantages, especially when operated in concert with a larger utility system. The main reasons to consider RE is cost-effectiveness, but other reasons are as diverse as: reduction of atmospheric emissions; compliance with regulations requiring RE; enhanced reliability through redundant energy supply; abate risks related to fuel availability and cost, or risk of fuel-spills during delivery; score points in a sustainability rating; or as a mitigation measure in a larger environmental-permitting process. Renewable energy technologies used on buildings include daylighting; solar photovoltaics; solar water heating; solar ventilation air preheating; passive solar heating and cooling load avoidance; wind power; biomass heat (or cogeneration as discussed in Chapter 8); anaerobic digestion of waste; and geothermal heat. Ground source heat pumps are also often considered, in-part, RE systems. Daylighting and the envelope measures (passive heating and cooling) are often considered efficiency measures, but daylighting is a direct and obvious use of solar energy in buildings, and photovoltaics (PV), Solar Water Heating and Solar Ventilation Air preheating are technologies to consider on any building project. We even consider an example of hydroelectric power on the water supply to a building. We cover the operating principle of each type of system, list components and provide schematic diagram of how components are assembled into systems; provide information for cost estimate and life cycle cost calculation, describe how system size may be optimized to minimize life cycle cost, and we stress the importance of operations and maintenance (O&M) over a long performance period. Significant emphasis is placed on integration of RE into the conventional utility system, at both the site level and from the perspective of the larger utility system, so that savings due to the RE may be realized without compromising the reliability of the system. Case studies are presented to exemplify application of each technology.

R2,237
List Price R3,225
Save R988 31%

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles22370
Mobicred@R210pm x 12* Mobicred Info
Free Delivery
Delivery AdviceOut of stock

Toggle WishListAdd to wish list
Review this Item

Product Description

Energy efficiency measures are generally less expensive than a renewable energy (RE) system to provide the same amount of energy saved. The Energy Information Administration reports that, on average, a dollar spent on efficiency saves $2 off the cost of a renewable energy system to provide the same amount of energy [IEA, 2011]. But as the saying goes "you can't save yourself rich" and having installed sophisticated controls and efficient systems, we need some source of energy to power them. On-site renewable energy systems offer several advantages, especially when operated in concert with a larger utility system. The main reasons to consider RE is cost-effectiveness, but other reasons are as diverse as: reduction of atmospheric emissions; compliance with regulations requiring RE; enhanced reliability through redundant energy supply; abate risks related to fuel availability and cost, or risk of fuel-spills during delivery; score points in a sustainability rating; or as a mitigation measure in a larger environmental-permitting process. Renewable energy technologies used on buildings include daylighting; solar photovoltaics; solar water heating; solar ventilation air preheating; passive solar heating and cooling load avoidance; wind power; biomass heat (or cogeneration as discussed in Chapter 8); anaerobic digestion of waste; and geothermal heat. Ground source heat pumps are also often considered, in-part, RE systems. Daylighting and the envelope measures (passive heating and cooling) are often considered efficiency measures, but daylighting is a direct and obvious use of solar energy in buildings, and photovoltaics (PV), Solar Water Heating and Solar Ventilation Air preheating are technologies to consider on any building project. We even consider an example of hydroelectric power on the water supply to a building. We cover the operating principle of each type of system, list components and provide schematic diagram of how components are assembled into systems; provide information for cost estimate and life cycle cost calculation, describe how system size may be optimized to minimize life cycle cost, and we stress the importance of operations and maintenance (O&M) over a long performance period. Significant emphasis is placed on integration of RE into the conventional utility system, at both the site level and from the perspective of the larger utility system, so that savings due to the RE may be realized without compromising the reliability of the system. Case studies are presented to exemplify application of each technology.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

American Society Of Mechanical Engineers,U.S.

Country of origin

United States

Series

Technologies for Sustainable Life (TSL) - Concise Monograph Series

Release date

July 2016

Availability

Supplier out of stock. If you add this item to your wish list we will let you know when it becomes available.

Authors

, , , , , , , ,

Dimensions

229 x 152 x 16mm (L x W x T)

Format

Hardcover - Cloth over boards

Pages

150

ISBN-13

978-0-7918-6124-0

Barcode

9780791861240

Categories

LSN

0-7918-6124-4



Trending On Loot